Efficient Markov chain Monte Carlo with incomplete multinomial data

نویسندگان

  • Kwang Woo Ahn
  • Kung-Sik Chan
چکیده

Multinomial Data By KWANG WOO AHN and KUNG-SIK CHAN Department of Statistics and Actuarial Science, The University of Iowa, Iowa City, IA USA [email protected] [email protected] Summary We propose a new, block Gibbs sampling scheme for incomplete multinomial data. The new approach facilitates maximal blocking, thereby reducing serial dependency and speeding up the convergence of the Gibbs sampler. We compare the new method with the standard, non-block Gibbs sampler via a numerical example. Some key words : Blocking; Gibbs Sampler; Dirichlet distribution; Epidemiology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Bayesian Inference with Incomplete Multinomial Data with Applications for Assessing the Spatio-Temporal Variation in Pathogen-Variant Diversity

With recent advance in genetic analysis, it has become feasible to classify a pathogen into genetically distinct variants even though they apparently cause an infected subject similar symptoms. The availability of such data opens up the interesting problem of studying the spatiotemporal variation in the diversity of variants of a pathogen. Data on pathogen variants often suffer the problems of ...

متن کامل

Data Augmentation for the Bayesian Analysis of Multinomial Logit Models

This article introduces a Markov chain Monte Carlo (MCMC) method for sampling the parameters of a multinomial logit model from their posterior distribution. Let yi ∈ {0, . . . ,M} denote the categorical response of subject i with covariates xi = (xi1, . . . , xip) T . Let X = (x1, . . . ,xn) T denote the design matrix, and let y = (y1, . . . , yn) T . Multinomial logit models relate yi to xi th...

متن کامل

MNP: R Package for Fitting the Multinomial Probit Model

MNP is a publicly available R package that fits the Bayesian multinomial probit model via Markov chain Monte Carlo. The multinomial probit model is often used to analyze the discrete choices made by individuals recorded in survey data. Examples where the multinomial probit model may be useful include the analysis of product choice by consumers in market research and the analysis of candidate or...

متن کامل

Some new analytic procedures in the Sib - pair statistical genetics package , 2011

Sib-pair is an extensible software package for genetic data manipulation and analysis. It provides interactive access to a large number of standard analyses, as well as some methodological novelties. In the following, I will give an overview of the program, and then describe some areas of recent development: extrapolation of extreme Monte Carlo P-values, the use of the grouped jackknife for int...

متن کامل

Bayesian Auxiliary Variable Models for Binary and Multinomial Regression

In this paper we discuss auxiliary variable approaches to Bayesian binary and multinomial regression. These approaches are ideally suited to automated Markov chain Monte Carlo simulation. In the first part we describe a simple technique using joint updating that improves the performance of the conventional probit regression algorithm. In the second part we discuss auxiliary variable methods for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010